[发明专利]一种基于高斯差分隐私和分布式深度学习的隐私保护方法在审

专利信息
申请号: 202310448002.6 申请日: 2023-04-24
公开(公告)号: CN116467750A 公开(公告)日: 2023-07-21
发明(设计)人: 黄琼;王庭安;杨潘;肖凯丰;吴伟宁 申请(专利权)人: 华南农业大学
主分类号: G06F21/62 分类号: G06F21/62;G06N20/00
代理公司: 佛山市君创知识产权代理事务所(普通合伙) 44675 代理人: 罗伟富
地址: 510640 广*** 国省代码: 广东;44
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明提供一种基于高斯差分隐私和分布式深度学习的隐私保护方法,该方法包括:中心服务器采用分布式深度学习方法根据本地客户端自身参数筛选本地客户端;筛选出的本地客户端从中心服务器下载全局参数;筛选出的本地客户端采用高斯差分隐私方法根据全局参数更新自身参数,将更新后的自身参数上传至中心服务器;中心服务器根据更新后的自身参数更新全局参数;当全局参数满足预设条件后输出最优全局参数。本发明在本地客户端使用了高斯差分隐私技术,使得本地客户端安全性提高以及保证了全局参数聚合的准确性,增加了全局模型的准确率。
搜索关键词: 一种 基于 高斯差分 隐私 分布式 深度 学习 保护 方法
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于华南农业大学,未经华南农业大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/202310448002.6/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top