[发明专利]一种基于LSTM-CNN和ICBAM长短期特征提取的铝电解槽温预测方法在审

专利信息
申请号: 202310369675.2 申请日: 2023-04-10
公开(公告)号: CN116307246A 公开(公告)日: 2023-06-23
发明(设计)人: 谢世文;谢永芳;朱烨;陈晓方 申请(专利权)人: 中南大学
主分类号: G06Q10/04 分类号: G06Q10/04;G06Q50/04;G06F18/214;G06F18/2431;G06F18/25;G06N3/0442;G06N3/0464;G06N3/048;G06N3/08
代理公司: 长沙麓创时代专利代理事务所(普通合伙) 43249 代理人: 贾庆
地址: 410083 湖南*** 国省代码: 湖南;43
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明公开了一种基于LSTM‑CNN和ICBAM长短期特征提取的铝电解槽温预测方法,采用LSTM‑CNN作为影响槽温的长期特征提取方法,首先对数据用LSTM提取长时间相关特征,然后再用CNN提取数据间的局部相关特征,从而得到基于长周期数据的长期深度特征。采用基于2D‑CNN和1D‑CNN双流卷积分别提取阳极电流和槽电压特征,然后基于ICBAM对双流特征进行注意力加权融合,得到槽温短期深度特征。为了更好的融合铝电解生产过程中的长期特征和短期特征这两种语义和尺度不一样的特征,利用AAW中的多尺度注意力模块,充分考虑了特征图中的全局信息与局部信息,从而能够提升模型预测的准确率。
搜索关键词: 一种 基于 lstm cnn icbam 短期 特征 提取 电解槽 预测 方法
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中南大学,未经中南大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/202310369675.2/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top