[发明专利]一种基于优化堆栈自编码网络的化工过程故障分类方法在审
申请号: | 202210705720.2 | 申请日: | 2022-06-21 |
公开(公告)号: | CN114925783A | 公开(公告)日: | 2022-08-19 |
发明(设计)人: | 徐琛;李启泽;陶洪峰 | 申请(专利权)人: | 江南大学 |
主分类号: | G06K9/62 | 分类号: | G06K9/62;G06N3/04;G06N3/08 |
代理公司: | 哈尔滨市阳光惠远知识产权代理有限公司 23211 | 代理人: | 吕永芳 |
地址: | 214122 江苏*** | 国省代码: | 江苏;32 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种基于优化堆栈自编码网络的化工过程故障分类方法,属于故障分类技术领域。所述方法通过在自监督学习训练阶段,使用有标签和无标签样本,结合Fisher判别准则优化堆栈自编码网络,寻找有利于分类的映射方向,逐层减小同类故障特征的类内距离,增大异类特征的类间距离。通过改进后的损失函数约束模型训练,使得堆栈自编码网络在反向传播时更新的神经元参数,既能最小化重构误差,使堆栈自编码网络从大量无标签样本中提取重构特征,又考虑到标签信息的利用,使堆栈自编码网络提取到尽可能多的分类特征。因此本发明提出的基于优化堆栈自编码网络的故障分类方法可以学习有效分类特征信息,提升的故障分类的准确率。 | ||
搜索关键词: | 一种 基于 优化 堆栈 编码 网络 化工 过程 故障 分类 方法 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于江南大学,未经江南大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/202210705720.2/,转载请声明来源钻瓜专利网。