[发明专利]一种基于樽海鞘群和BP神经网络的电力负荷预测方法在审
申请号: | 202210187824.9 | 申请日: | 2022-02-28 |
公开(公告)号: | CN114548350A | 公开(公告)日: | 2022-05-27 |
发明(设计)人: | 孙全;孙渊 | 申请(专利权)人: | 上海电机学院 |
主分类号: | G06N3/00 | 分类号: | G06N3/00;G06N3/08;G06Q50/06;H02J3/00 |
代理公司: | 上海伯瑞杰知识产权代理有限公司 31227 | 代理人: | 孟旭彤 |
地址: | 200240 *** | 国省代码: | 上海;31 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种基于樽海鞘群和BP神经网络的电力负荷预测方法,解决了目前预测算法、方法精度不高的问题,其技术方案要点是通过获取完整原始数据,并进行预处理,再构建并确定BP神经网络的结构、学习效率、目标精度和训练次数,确定樽海鞘群算法的种群规模、迭代次数、搜索空间的上下界和动态权重,依据BP神经网络参数的个数确定樽海鞘群的维数,然后参照建立的BP神经网络模型,随机生成樽海鞘群,通过樽海鞘群算法的不断迭代,得出最优参数组合,将其作为BP神经网络的初始值,最后运行BP神经网络进行预测,本发明的一种基于樽海鞘群和BP神经网络的电力负荷预测方法,能更加科学、可靠的实现短期预测,保障电力系统安全稳定运行。 | ||
搜索关键词: | 一种 基于 海鞘 bp 神经网络 电力 负荷 预测 方法 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于上海电机学院,未经上海电机学院许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/202210187824.9/,转载请声明来源钻瓜专利网。