[发明专利]基于深度卷积神经网络的脑动脉瘤三维检测分割方法在审
申请号: | 202210044854.4 | 申请日: | 2022-01-14 |
公开(公告)号: | CN114511513A | 公开(公告)日: | 2022-05-17 |
发明(设计)人: | 徐枫;乔晖;王荣品;郭雨晨;戴琼海;李武超;田冲 | 申请(专利权)人: | 清华大学;贵州省人民医院 |
主分类号: | G06T7/00 | 分类号: | G06T7/00;G06T7/11;G06K9/62;G06N3/04;G06N3/08;G06V10/774;G06V10/82 |
代理公司: | 北京清亦华知识产权代理事务所(普通合伙) 11201 | 代理人: | 杜月 |
地址: | 10008*** | 国省代码: | 北京;11 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本申请提出了一种基于深度卷积神经网络的脑动脉瘤三维检测分割方法,包括:获取待分割的三维医学图像数据;对三维医学图像数据的预测进行初始化,生成种子点作为初始的已测试区域;从已测试区域向外扩张一个区域,得到扩张区域;将扩张区域输入至训练好的流网络模型中,对扩张区域进行预测,并将经过预测的扩张区域并入已测试区域;对三维医学图像数据进行迭代预测,直到已测试区域完全覆盖三维医学图像数据,完成预测,得到三维医学图像数据的预测结果;根据三维医学图像数据的预测结果,得到三维医学图像数据的分割结果。本申请引入了流网络模型中迭代预测的思路,在保持样本三维结构信息的同时减少了模型的参数量,从而使模型更加准确、便捷。 | ||
搜索关键词: | 基于 深度 卷积 神经网络 动脉瘤 三维 检测 分割 方法 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于清华大学;贵州省人民医院,未经清华大学;贵州省人民医院许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/202210044854.4/,转载请声明来源钻瓜专利网。