[发明专利]一种基于多模态对比学习的深度特权语义分割方法在审
申请号: | 202111626188.7 | 申请日: | 2021-12-28 |
公开(公告)号: | CN114332099A | 公开(公告)日: | 2022-04-12 |
发明(设计)人: | 柯丹宁;龚小谨 | 申请(专利权)人: | 浙江大学 |
主分类号: | G06T7/10 | 分类号: | G06T7/10 |
代理公司: | 杭州求是专利事务所有限公司 33200 | 代理人: | 林超 |
地址: | 310058 浙江*** | 国省代码: | 浙江;33 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种基于多模态对比学习的深度特权语义分割方法。采集RGB图像和深度图像并与类别共同构成训练集,建立均包含语义分割基础网络和投影模块的RGB分支和深度分支;用逐像素交叉熵损失监督训练两个语义分割基础网络;用跨模态对比损失优化由投影模块得到的嵌入特征,通过反向传播算法使得语义分割基础网络中的特征编码器能够挖掘RGB特征和深度特征的共性,一定程度上改善RGB图像中由于色彩纹理相近而难于分割的情况,从而提升语义分割的精度。本发明在推理阶段只需要场景的RGB图像而无需深度信息,由于在训练阶段引入了深度信息,有较好的分割能力和泛化性能。 | ||
搜索关键词: | 一种 基于 多模态 对比 学习 深度 特权 语义 分割 方法 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于浙江大学,未经浙江大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/202111626188.7/,转载请声明来源钻瓜专利网。