[发明专利]多尺度CNN特征嵌入的多核学习高光谱图像分类方法在审
申请号: | 202111398100.0 | 申请日: | 2021-11-19 |
公开(公告)号: | CN114140646A | 公开(公告)日: | 2022-03-04 |
发明(设计)人: | 孙乐;赵广瑞;宋相博;何承迅 | 申请(专利权)人: | 南京信息工程大学 |
主分类号: | G06V10/764 | 分类号: | G06V10/764;G06V10/77;G06V10/82;G06K9/62;G06N3/04;G06N3/08 |
代理公司: | 南京经纬专利商标代理有限公司 32200 | 代理人: | 罗运红 |
地址: | 224002 江苏省盐城*** | 国省代码: | 江苏;32 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本申请涉及一种多尺度CNN特征嵌入的多核学习高光谱图像分类方法。该方法包括:将原始高光谱图像进行超像素分割,获得L个超像素分割图,对原始高光谱图像进行光谱核提取,获得原始高光谱图像的光谱核;采用加权平均滤波对L个超像素分割图进行特征提取,获得超像素间的空间核;利用多尺度CNN对原始高光谱图像进行处理,获得不同尺度下的深度空间核;将光谱核、超像素间的空间核和深度空间核重塑为一维列向量,获得多个一维列向量,并重构为二维矩阵;对二维矩阵进行主成分分析,将第一主成分列向量重塑为原始核大小的最优核;将最优核作为支持向量机的核函数对原始高光谱图像进行分类,获得分类结果。能够快速有效的获得检测结果。 | ||
搜索关键词: | 尺度 cnn 特征 嵌入 多核 学习 光谱 图像 分类 方法 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于南京信息工程大学,未经南京信息工程大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/202111398100.0/,转载请声明来源钻瓜专利网。