[发明专利]基于轻量级神经网络的电池缺陷检测方法在审
| 申请号: | 202111337049.2 | 申请日: | 2021-11-12 |
| 公开(公告)号: | CN113989267A | 公开(公告)日: | 2022-01-28 |
| 发明(设计)人: | 陈海永;冯会川;袁乐;刘新如 | 申请(专利权)人: | 河北工业大学 |
| 主分类号: | G06T7/00 | 分类号: | G06T7/00;G06V10/82;G06V10/80;G06V10/44;G06V10/764;G06V10/774;G06K9/62;G06N3/04;G06N3/08 |
| 代理公司: | 天津翰林知识产权代理事务所(普通合伙) 12210 | 代理人: | 蔡运红 |
| 地址: | 300130 天津市红桥区*** | 国省代码: | 天津;12 |
| 权利要求书: | 查看更多 | 说明书: | 查看更多 |
| 摘要: | 本发明为一种基于轻量级神经网络的电池缺陷检测方法,基于轻量级神经网络构建缺陷检测模型;缺陷检测模型以ShuffleNetV2为骨干网络,将精炼的跨阶段局部机制融合到ShuffleNetV2网络中,得到精炼跨阶段局部ShuffleNetV2网络,精炼跨阶段局部ShuffleNetV2网络中还融合了并行分组注意力模块;精炼跨阶段局部ShuffleNetV2网络的输出特征图再经过低层特征引导的融合模块后,输入到区域推荐网络中推荐区域,对推荐区域进行分类和回归,得到缺陷类别和位置。并行分组注意力模块实现浅层与深层特征融合,低层特征引导的融合模块扩大了感受野;该方法解决了轻量化网络检测效果不理想的问题。 | ||
| 搜索关键词: | 基于 轻量级 神经网络 电池 缺陷 检测 方法 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于河北工业大学,未经河北工业大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/202111337049.2/,转载请声明来源钻瓜专利网。
- 上一篇:一种牡蛎蛋白小分子肽固体饮料及其制备方法
- 下一篇:一种诊疗机器人





