[发明专利]基于联邦学习和ALQ压缩的分布式机器学习方法及系统在审
申请号: | 202111092031.0 | 申请日: | 2021-09-17 |
公开(公告)号: | CN113742778A | 公开(公告)日: | 2021-12-03 |
发明(设计)人: | 马汝辉;郭含熙;杨晴;王灏;华扬;宋涛;管海兵 | 申请(专利权)人: | 上海交通大学 |
主分类号: | G06F21/62 | 分类号: | G06F21/62;G06N20/00 |
代理公司: | 上海科盛知识产权代理有限公司 31225 | 代理人: | 翁惠瑜 |
地址: | 200240 *** | 国省代码: | 上海;31 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明涉及一种基于联邦学习和ALQ压缩的分布式机器学习方法及系统,所述系统包括一个服务器端和多个客户端,服务器端的功能包括初始化全局机器学习模型、分发模型至客户端、收集客户端的模型并计算新的全局模型;客户端的功能包括接收全局模型、用本地数据对模型进行训练以及上传训练好的本地模型,服务器端和客户端之间的通信数据通过ALQ压缩算法进行压缩。与现有技术相比,本发明具有保证数据隐私安全性、适用于对通信量和扩展性有严格要求的空间信息网络等优点。 | ||
搜索关键词: | 基于 联邦 学习 alq 压缩 分布式 机器 学习方法 系统 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于上海交通大学,未经上海交通大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/202111092031.0/,转载请声明来源钻瓜专利网。