[发明专利]基于深度学习和边缘计算的外绝缘设备放电故障诊断方法在审
申请号: | 202110976595.4 | 申请日: | 2021-08-24 |
公开(公告)号: | CN113610837A | 公开(公告)日: | 2021-11-05 |
发明(设计)人: | 刘云鹏;马子儒;裴少通;李泳霖 | 申请(专利权)人: | 华北电力大学(保定) |
主分类号: | G06T7/00 | 分类号: | G06T7/00;G06T7/90;G06T5/00;G06N3/04;G06N3/08 |
代理公司: | 北京科亿知识产权代理事务所(普通合伙) 11350 | 代理人: | 李兴林 |
地址: | 071000 河北*** | 国省代码: | 河北;13 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种基于深度学习和边缘计算的外绝缘设备放电故障诊断方法,包括:S1,构建紫外放电图谱样本库;S2,将紫外放电图谱作为二维图像输入量,进行图像预处理;S3,利用图像预处理后的紫外放电图谱的二维图像输入量训练卷积神经网络,对卷积特征进行提取,得到诊断模型;S4,将诊断模型部署在边缘计算平台JetsonXavierNX上;S5,将紫外成像仪拍摄的待测图像输入到边缘计算平台JetsonXavierNX中进行快速诊断,得到外绝缘设备放电故障信息。本发明提供的方法,利用深度学习和边缘计算技术,对外绝缘设备的紫外图谱进行本地端的快速诊断,最大限度地减少人工工作量,并提高电力巡检作业的实时性。 | ||
搜索关键词: | 基于 深度 学习 边缘 计算 绝缘 设备 放电 故障诊断 方法 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于华北电力大学(保定),未经华北电力大学(保定)许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/202110976595.4/,转载请声明来源钻瓜专利网。