[发明专利]基于特征迁移学习的锂电池健康状况监测方法有效

专利信息
申请号: 202110801474.6 申请日: 2021-07-15
公开(公告)号: CN113536676B 公开(公告)日: 2022-09-27
发明(设计)人: 李鹏华;程艺;侯杰;陈丰伟;俞成浦;孙健;周桐 申请(专利权)人: 重庆邮电大学
主分类号: G06F30/27 分类号: G06F30/27;G06N3/04;G06N3/08;H01M10/42;G06F119/02
代理公司: 北京同恒源知识产权代理有限公司 11275 代理人: 杨柳岸
地址: 400065 *** 国省代码: 重庆;50
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明涉及一种基于特征迁移学习的锂电池健康状况监测方法,属于电池管理技术领域。该方法包括以下步骤:S1:基于特征迁移学习混合模型的构建;S2:基于特征迁移学习混合模型的应用。针对在缺少锂电池训练数据情况下,神经网络监测锂电池健康状况效果不佳的问题,研究基于特征迁移学习的锂电池健康状况监测方法。以神经网络模型为对象,设计CNN‑BILSTM串联混合模型,实现空间特征以及双向时间依赖关系的提取;以锂电池数据的特征空间为对象,研究特征迁移学习算法,通过迁移其他数据集的特征知识用于模型训练,实现在缺少训练数据情况下,训练信息的弥补。
搜索关键词: 基于 特征 迁移 学习 锂电池 健康状况 监测 方法
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于重庆邮电大学,未经重庆邮电大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/202110801474.6/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top