[发明专利]一种基于匹配网络少样本学习的图像分类方法有效
申请号: | 202110727063.7 | 申请日: | 2021-06-29 |
公开(公告)号: | CN113537305B | 公开(公告)日: | 2022-08-19 |
发明(设计)人: | 杜刚;周小林;张永刚;姜晓媛;邹卓;郑立荣 | 申请(专利权)人: | 复旦大学 |
主分类号: | G06V10/764 | 分类号: | G06V10/764;G06V10/774;G06V10/82;G06V10/74;G06K9/62;G06N3/04;G06N3/08 |
代理公司: | 上海正旦专利代理有限公司 31200 | 代理人: | 陆飞;陆尤 |
地址: | 200433 *** | 国省代码: | 上海;31 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明属于计算机视觉图像识别技术领域,具体为一种基于匹配网络少样本学习的图像分类方法。本发明步骤包括:将图像数据集划分为类别互斥的训练集和测试集;基于episode方式将训练集和测试集分别划分出支持集和查询集;将支持集和查询集样本通过卷积神经网络CNN进行特征提取;将支持集和查询集的样本特征通过基于注意力机制的长短期记忆网络进行完全条件嵌入;由得到的支持集,查询集完全条件嵌入的结果,计算查询集和支持集的改进余弦相似度,并计算预测值;计算混合损失函数,用AdamW梯度学习算法优化匹配网络模型;将在训练集上训练后的模型,应用于测试集,得到分类结果。本发明方法图像分类精度高、运算速度快。 | ||
搜索关键词: | 一种 基于 匹配 网络 样本 学习 图像 分类 方法 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于复旦大学,未经复旦大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/202110727063.7/,转载请声明来源钻瓜专利网。