[发明专利]基于卷积神经网络字典对学习的目标跟踪方法与系统有效
申请号: | 202110707429.4 | 申请日: | 2021-06-25 |
公开(公告)号: | CN113256685B | 公开(公告)日: | 2021-09-24 |
发明(设计)人: | 王军;孟晨晨;邓承志;王员云;章利民;张珮芸;祝文狄;王涵 | 申请(专利权)人: | 南昌工程学院 |
主分类号: | G06T7/246 | 分类号: | G06T7/246;G06T7/73;G06K9/62;G06N3/04;G06N3/08 |
代理公司: | 北京中济纬天专利代理有限公司 11429 | 代理人: | 黄攀 |
地址: | 330099 江西*** | 国省代码: | 江西;36 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明提出一种基于卷积神经网络字典对学习的目标跟踪方法及系统,该方法包括:在第一帧目标图像进行采样处理以生成正候选样本,根据正候选样本训练得到边界框回归模型;在后续帧目标框内的目标图像的邻域内重新进行采样以生成正负候选样本,对卷积神经网络模型的全连接参数进行微调;基于空间距离机制以及卷积神经网络模型获得训练样本的深度特征,基于训练样本的深度特征进行字典对模型学习以获得初始字典对;基于训练样本的特征并进行联合字典对模型学习;通过联合字典对中的原子的线性组合表示候选目标图像样本,以实现目标图像定位跟踪。本发明提出的目标跟踪方法,具有很好的鲁棒性与精确度,可以更好地处理目标外观变化,实现目标跟踪。 | ||
搜索关键词: | 基于 卷积 神经网络 字典 学习 目标 跟踪 方法 系统 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于南昌工程学院,未经南昌工程学院许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/202110707429.4/,转载请声明来源钻瓜专利网。