[发明专利]一种机器学习中训练数据隐私度量的方法和系统有效

专利信息
申请号: 202110596832.4 申请日: 2021-05-31
公开(公告)号: CN113051620B 公开(公告)日: 2021-08-03
发明(设计)人: 王琛;刘高扬;徐天龙;彭凯 申请(专利权)人: 华中科技大学
主分类号: G06F21/62 分类号: G06F21/62;G06K9/62;G06N20/20
代理公司: 华中科技大学专利中心 42201 代理人: 夏倩
地址: 430074 湖北*** 国省代码: 湖北;42
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明公开了一种机器学习中训练数据隐私度量的方法和系统,属于人工智能领域中的隐私安全领域。本发明针对实际场景下的机器学习模型黑盒接口查询机制,在评估过程中无需模型内部信息,仅计算并利用雅可比矩阵评估模型对数据样本和特征的敏感度,避免了评估过程中的隐私泄露;从基于梯度优化的理论出发,结合模型输出‑输入之间的关系,有效量化了模型中的数据隐私信息泄露的可能性;本发明不依赖单种隐私攻击,对大部分隐私攻击尤其是依赖模型梯度与预测输出的攻击极为有效。本发明在不需了解模型内部信息的条件下即可进行模型隐私泄露风险的评估,在评估过程中保证了模型和训练集的隐私的安全,为人工智能行业的蓬勃发展提供稳定保障。
搜索关键词: 一种 机器 学习 训练 数据 隐私 度量 方法 系统
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于华中科技大学,未经华中科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/202110596832.4/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top