[发明专利]一种基于深度学习的超声甲状腺结节良恶性预测方法在审
申请号: | 202110557852.0 | 申请日: | 2021-05-21 |
公开(公告)号: | CN113344864A | 公开(公告)日: | 2021-09-03 |
发明(设计)人: | 张乾君;朱建新 | 申请(专利权)人: | 江苏乾君坤君智能网络科技有限公司 |
主分类号: | G06T7/00 | 分类号: | G06T7/00;G06T7/11;G06K9/62;G06N3/04;G06N3/08 |
代理公司: | 暂无信息 | 代理人: | 暂无信息 |
地址: | 226001 江苏省南通市*** | 国省代码: | 江苏;32 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明具体涉及一种基于深度学习的超声甲状腺结节良恶性预测方法。包括以下步骤:S1:采集超声结节图像样本,对超声结节图像样本进行预处理;所述预处理包括图像样本质量改进、图像样本标注数据;S2:基于图像样本标注数据训练深度神经网络;S3:将训练完成的深度神经网络用于实时超声图像,得到分割完成的结节区域图像;S4:基于分割完成的结节区域图像通过结节判定的数据库,标注结节类型,作为结节预测模型的训练样本;S5:采用前馈神经网络,使用已标注的样本数据作为训练集网络,通过特征选择计算准确率和召回率,反复迭代进行学习训练,选取评估结果最好的网络模型进行输出;S6:基于训练完成的网络模型,预测甲状腺结节的类型。 | ||
搜索关键词: | 一种 基于 深度 学习 超声 甲状腺 结节 恶性 预测 方法 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于江苏乾君坤君智能网络科技有限公司,未经江苏乾君坤君智能网络科技有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/202110557852.0/,转载请声明来源钻瓜专利网。