[发明专利]一种基于深度学习的轻量级目标语义分割方法有效
申请号: | 202110545310.1 | 申请日: | 2021-05-19 |
公开(公告)号: | CN113223006B | 公开(公告)日: | 2022-04-15 |
发明(设计)人: | 陈光柱;易佳 | 申请(专利权)人: | 成都理工大学 |
主分类号: | G06T7/10 | 分类号: | G06T7/10;G06N3/04;G06N3/08;G06T7/181 |
代理公司: | 暂无信息 | 代理人: | 暂无信息 |
地址: | 610059 四川*** | 国省代码: | 四川;51 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明提出了一种基于深度学习的轻量级目标语义分割方法。该方法的关键在于构建二维语义分割网络结构,在满足轻量化的基础上提高分割精度,并能解决多尺度目标分割问题。选取轻量化网络MobileNet v2模型的骨干网络,提出边界约束网络提高对边界分割的处理能力,从而可以同时满足分割的实时性与准确性。设计具有多尺度性质的金字塔池化模块,利用多次金字塔池化融合不同尺度的特征信息,可保证分割网络对多尺度目标分割的适用性。本发明针对目标的分割问题,研究对MobileNet v2模型的骨干网络的下采样特征图尺寸进行扩大,补全MobileNet v2模型丢失的图像的部分特征,提高了基于MobileNet v2模型对目标的分割精度。 | ||
搜索关键词: | 一种 基于 深度 学习 轻量级 目标 语义 分割 方法 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于成都理工大学,未经成都理工大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/202110545310.1/,转载请声明来源钻瓜专利网。