[发明专利]一种基于改进L1正则化和聚类的高维数据特征选择方法在审

专利信息
申请号: 202110525604.8 申请日: 2021-05-14
公开(公告)号: CN113177604A 公开(公告)日: 2021-07-27
发明(设计)人: 栗伟;谢维冬;王林洁;闵新;王珊珊;于鲲 申请(专利权)人: 东北大学
主分类号: G06K9/62 分类号: G06K9/62;G16B40/00
代理公司: 沈阳东大知识产权代理有限公司 21109 代理人: 李珉
地址: 110819 辽宁*** 国省代码: 辽宁;21
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明提供一种基于改进L1正则化和聚类的高维数据特征选择方法,涉及机器学习技术领域。本发明提出了一种混合特征选择算法用于微阵列数据分析,基于K‑Means聚类算法和改进L1正则化的思想,其中K‑Means聚类算法用于数据预处理来删除冗余特征,改进L1正则化方法用于特征选择,提高稳定性和分类准确率。
搜索关键词: 一种 基于 改进 l1 正则 数据 特征 选择 方法
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于东北大学,未经东北大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/202110525604.8/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top