[发明专利]一种面向分布式深度学习训练任务的高效资源分配系统有效

专利信息
申请号: 202110487973.2 申请日: 2021-05-06
公开(公告)号: CN113190351B 公开(公告)日: 2022-06-21
发明(设计)人: 李方舒;赵来平;曲雯毓 申请(专利权)人: 天津大学
主分类号: G06F9/50 分类号: G06F9/50
代理公司: 天津市三利专利商标代理有限公司 12107 代理人: 张义
地址: 300072*** 国省代码: 天津;12
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明公开了一种面向分布式深度学习训练任务的高效资源分配系统,包括:初始资源配置模块;LAS队列;二分类器;性能模型;多级反馈队列MLFQ,首先将分布式深度学习作业分为可预测作业和不可预测作业,并对两类作业设置不同的作业优先级和资源调整方案。针对于可预测作业,资源调整的收益往往是可以预测的,因此每次调整都可以给集群带来收益。而不可预测作业,其收益往往不可知。此外,可预测作业和不可预测作业的优先级计算方式不同,可预测作业综合考虑资源调整和剩余作业完成时间来计算优先级,而不可预测作业通过已接受服务数来计算优先级。为了统一两类作业在集群中的统一调度,我们采用波达计数法来解决该问题。
搜索关键词: 一种 面向 分布式 深度 学习 训练 任务 高效 资源 分配 系统
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于天津大学,未经天津大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/202110487973.2/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top