[发明专利]一种基于自监督学习和迁移学习的抑郁症分类方法在审
申请号: | 202110474703.8 | 申请日: | 2021-04-29 |
公开(公告)号: | CN113255734A | 公开(公告)日: | 2021-08-13 |
发明(设计)人: | 龙海霞;郭渊;杨旭华;崔滢;徐新黎 | 申请(专利权)人: | 浙江工业大学 |
主分类号: | G06K9/62 | 分类号: | G06K9/62;G06N3/04;G06N3/08;G16H20/70 |
代理公司: | 杭州斯可睿专利事务所有限公司 33241 | 代理人: | 王利强 |
地址: | 310014 浙江省*** | 国省代码: | 浙江;33 |
权利要求书: | 暂无信息 | 说明书: | 暂无信息 |
摘要: | 一种基于自监督学习和迁移学习的抑郁症分类方法,基于弥散张量成像数据跟踪全脑白质纤维束,构建全脑白质纤维束网络,利用自监督学习策略通过对比学习自动学习与下游任务无关的脑网络节点表征和网络表征。基于脑网络表征和和非影像表型信息,构建群组网络,将抑郁症分类问题转换为网络节点分类问题,使用基于谱图卷积的图卷积神经网络模型对抑郁症患者和正常对照分类。本发明利用自监督学习和迁移学习,部分解决了抑郁症样本较少的问题,有效挖掘了抑郁症相关的脑网络水平特征,提高了抑郁症分类的精度。 | ||
搜索关键词: | 一种 基于 监督 学习 迁移 抑郁症 分类 方法 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于浙江工业大学,未经浙江工业大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/202110474703.8/,转载请声明来源钻瓜专利网。