[发明专利]基于无池化卷积嵌入和注意分布神经网络的新闻分类方法有效

专利信息
申请号: 202011443363.4 申请日: 2020-12-11
公开(公告)号: CN112527959B 公开(公告)日: 2023-05-30
发明(设计)人: 唐贤伦;郝博慧;彭德光;钟冰;闫振甫;王会明;张璞 申请(专利权)人: 重庆邮电大学
主分类号: G06F16/33 分类号: G06F16/33;G06F16/35;G06F40/216;G06F40/289;G06F40/30;G06F18/241;G06F18/2415;G06N3/0464;G06N3/048;G06N3/08
代理公司: 重庆市恒信知识产权代理有限公司 50102 代理人: 陈栋梁
地址: 400065 重*** 国省代码: 重庆;50
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明请求保护一种基于无池化卷积嵌入和注意分布神经网络的新闻分类方法,它利用特征和权重作为分类过程中的关键因素。其机制是使用一种在嵌入层中进行卷积以提取局部特征,删除池化层以减少信息丢失,然后添加注意力机制以重新分配权重以从而获得文本的全局特征。该模型不仅捕获了文本的深刻特征,还捕获了新闻各部分的重要性。卷积神经网络(CNN)由于具有提取局部特征和位置不变特征的优势而在文本分类任务中发挥了重要作用。注意力机制由于其对文本上下文信息的提取,以及更加关注重要部分的特点,强化关键信息权重,两者结合有更强的特征提取能力。结合无池化CNN和全局注意力机制来处理新闻分类问题可以显著提高文本分类的准确率。
搜索关键词: 基于 无池化 卷积 嵌入 注意 分布 神经网络 新闻 分类 方法
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于重庆邮电大学,未经重庆邮电大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/202011443363.4/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top