[发明专利]一种基于多尺度视觉特征提取的轻量级语义分割方法有效
申请号: | 202011424180.8 | 申请日: | 2020-12-08 |
公开(公告)号: | CN112634276B | 公开(公告)日: | 2023-04-07 |
发明(设计)人: | 宋霄罡;付旺;梁莉;张元培 | 申请(专利权)人: | 西安理工大学 |
主分类号: | G06T7/10 | 分类号: | G06T7/10;G06V10/40;G06V10/80;G06V10/764;G06V10/82;G06N3/0464;G06N3/08 |
代理公司: | 西安弘理专利事务所 61214 | 代理人: | 徐瑶 |
地址: | 710048 陕*** | 国省代码: | 陕西;61 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种基于多尺度视觉特征提取的轻量级语义分割方法,包括以下步骤:网络建立:首先构建基于多尺度特征提取的轻量级卷积神经网络LitNet,通过特征提取器提取图像特征,将特征传入融合空洞卷积的空间金字塔模块提取图像多尺度特征,最后通过简单上采样模块完成特征整合,恢复图像分辨率;网络训练:使用Tensorflow框架搭建网络结构,使用交叉熵函数作为损失函数,使用Adam算法优化训练参数,并在训练过程中采用早停策略防止网络训练过拟合,以达到最优训练效果;网络测试:将测试图像输入网络,得到语义分割结果,并计算mIoU与FPS,对网络性能进行评估,经过测试,本发明在CamVid数据集上模型大小为10M,mIoU为70.24%,可以达到34FPS,可以满足实时分割要求。 | ||
搜索关键词: | 一种 基于 尺度 视觉 特征 提取 轻量级 语义 分割 方法 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于西安理工大学,未经西安理工大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/202011424180.8/,转载请声明来源钻瓜专利网。