[发明专利]一种细粒度识别模型的压缩方法和设备有效
| 申请号: | 202011285432.3 | 申请日: | 2020-11-17 |
| 公开(公告)号: | CN112101487B | 公开(公告)日: | 2021-07-16 |
| 发明(设计)人: | 尹继圣 | 申请(专利权)人: | 深圳感臻科技有限公司 |
| 主分类号: | G06K9/62 | 分类号: | G06K9/62;G06N3/08;G06N3/04 |
| 代理公司: | 深圳智趣知识产权代理事务所(普通合伙) 44486 | 代理人: | 王策 |
| 地址: | 518000 广东省深圳市南山区粤*** | 国省代码: | 广东;44 |
| 权利要求书: | 查看更多 | 说明书: | 查看更多 |
| 摘要: | 本发明提出一种细粒度识别模型的压缩方法和设备,包括:步骤1、获取用于细粒度识别的深度神经网络模型;步骤2、对深度神经网络模型的缩放因子添加L1正则约束后进行训练;步骤3、在完成训练后,根据缩放因子对训练完成后的深度神经网络模型进行逐层剪枝处理;步骤4、对完成剪枝的深度神经网络模型进行调整以减小剪枝对模型带来的精度损失,得到调整后的深度神经网络模型。步骤5、重复执行步骤2‑步骤4,直到得到的深度神经网络模型符合预设模型剪枝阈值的条件,且将符合条件的深度神经网络模型作为最终模型。本方案通过多次根据缩放因子对训练完成后的深度神经网络模型进行逐层剪枝处理的方式,有效压缩了深度神经网络模型。 | ||
| 搜索关键词: | 一种 细粒度 识别 模型 压缩 方法 设备 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于深圳感臻科技有限公司,未经深圳感臻科技有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/202011285432.3/,转载请声明来源钻瓜专利网。





