[发明专利]基于生成对抗网络的医疗数据扩充方法有效
申请号: | 202011090696.3 | 申请日: | 2020-10-13 |
公开(公告)号: | CN112215339B | 公开(公告)日: | 2023-01-03 |
发明(设计)人: | 罗森林;李班;潘丽敏 | 申请(专利权)人: | 北京理工大学 |
主分类号: | G06N3/04 | 分类号: | G06N3/04;G06N3/08;G06N20/10;G16H50/70 |
代理公司: | 暂无信息 | 代理人: | 暂无信息 |
地址: | 100081 *** | 国省代码: | 北京;11 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明涉及一种医疗数据扩充方法,尤其是指一种针对医疗中具有复杂分布的表格类型数据扩充方法,属于计算机与信息科学技术领域。该方法包括:首先学习表格数据的边缘概率分布,具体方法是利用累积概率分布函数将表格的每一维数据处理为均匀分布数据并训练一个神经网络拟合累积概率分布函数的逆函数将均匀分布数据映射回目标分布的数据;利用改进的生成对抗网络模型WGAN‑GP学习预处理后均匀分布数据的联合概率分布;最终利用训练好的表示累积概率分布函数逆函数的神经网络将从GAN的生成器采样出的均匀分布数据变换至目标分布的数据,从而生成和训练样本具有相同概率分布的生成样本。 | ||
搜索关键词: | 基于 生成 对抗 网络 医疗 数据 扩充 方法 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于北京理工大学,未经北京理工大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/202011090696.3/,转载请声明来源钻瓜专利网。