[发明专利]基于深度强化学习的驾驶员纵向跟车行为模型构建方法有效
申请号: | 202011026453.3 | 申请日: | 2020-09-25 |
公开(公告)号: | CN112201069B | 公开(公告)日: | 2021-10-29 |
发明(设计)人: | 郭景华;李文昌;王靖瑶;王班;肖宝平 | 申请(专利权)人: | 厦门大学 |
主分类号: | G08G1/0967 | 分类号: | G08G1/0967;G06N3/08;G06N3/04 |
代理公司: | 厦门南强之路专利事务所(普通合伙) 35200 | 代理人: | 马应森 |
地址: | 361005 福建*** | 国省代码: | 福建;35 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 基于深度强化学习的驾驶员纵向跟车行为模型构建方法,属于汽车智能安全与自动驾驶领域。基于中国实际道路工况,采集符合中国道路特征的驾驶员驾驶车辆行驶过程中的车辆状态信息和周围环境信息,统计分析采集的数据,给出驾驶员跟车行驶过程的行为特性及其影响因素。确定表征驾驶员在某个时刻所采取动作的基准信息,建立描述驾驶员跟车行为状态迭代关系的数学模型。设计基于竞争Q网络构架的驾驶员纵向跟车行为模型的神经网络结构。设计基于竞争Q网络构架的神经网络的驾驶员纵向跟车行为学习流程。设计基于深度强化学习的驾驶员纵向跟车行为模型的训练方法。可准确地描述不同工况下驾驶员的跟车行为特性,实现对驾驶员跟车行为的复现能力。 | ||
搜索关键词: | 基于 深度 强化 学习 驾驶员 纵向 车行 模型 构建 方法 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于厦门大学,未经厦门大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/202011026453.3/,转载请声明来源钻瓜专利网。