[发明专利]一种基于深度学习的医学图像分割方法有效

专利信息
申请号: 202010983480.3 申请日: 2020-09-18
公开(公告)号: CN112150428B 公开(公告)日: 2022-12-02
发明(设计)人: 李英;梁宇翔;李志云;张宏利;朱琦;李书达 申请(专利权)人: 青岛大学
主分类号: G06T7/00 分类号: G06T7/00;G06T7/11;G06N3/04
代理公司: 青岛高晓专利事务所(普通合伙) 37104 代理人: 于正河
地址: 266000 山*** 国省代码: 山东;37
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明属于图像分割技术领域,涉及一种基于深度学习的医学图像分割方法,先在编码器和解码器阶段使用新型的卷积模块,其次再设计一个包含注意力机制的残差瓶颈结构,用在跳层连接上,一方面减少编码器和解码器之间的语义差异,另一方面是使得神经网络在训练过程中能更加注意要分割的目标区域,从而能够提取更加精细的语义特征;其方法简单,能够更好的识别模糊的边界,分割出来的图像效果更加连贯,抵抗噪声干扰能力强,具有很强的泛化能力。
搜索关键词: 一种 基于 深度 学习 医学 图像 分割 方法
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于青岛大学,未经青岛大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/202010983480.3/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top