[发明专利]基于深度学习的开放集辐射源个体识别方法在审
| 申请号: | 202010723991.1 | 申请日: | 2020-07-24 |
| 公开(公告)号: | CN111914919A | 公开(公告)日: | 2020-11-10 |
| 发明(设计)人: | 汪清;张子豪;贺爽 | 申请(专利权)人: | 天津大学 |
| 主分类号: | G06K9/62 | 分类号: | G06K9/62;G06K9/46;G06N3/04 |
| 代理公司: | 天津市北洋有限责任专利代理事务所 12201 | 代理人: | 刘国威 |
| 地址: | 300072*** | 国省代码: | 天津;12 |
| 权利要求书: | 查看更多 | 说明书: | 查看更多 |
| 摘要: | 本发明属于通信辐射源个体识别领域以及深度学习领域,为实现对已知辐射源个体的准确分类,同时自主识别未知辐射源个体数据,扩大深度网络的应用范围,本发明,基于深度学习的开放集辐射源个体识别方法,在训练阶段,通过卷积神经网络提取训练集的类间差异特征,生成闭集激活向量CS‑AV用于已知集合分类,以及类内共同特征用于计算已知类基准向量即平均激活向量MAV,和构建威布尔模型,从而建立已知信息的整体量化模型;在测试阶段,通过威布尔累积分布函数CDF计算开集激活向量OS‑AV,通过开集激活向量OS‑AV定量表示测试样本不同于已知类的特异性特征,并估计样本的开集概率。本发明主要应用于辐射源个体识别场合。 | ||
| 搜索关键词: | 基于 深度 学习 开放 辐射源 个体 识别 方法 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于天津大学,未经天津大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/202010723991.1/,转载请声明来源钻瓜专利网。





