[发明专利]移动边缘网络中基于强化学习的AR任务卸载和资源分配方法有效

专利信息
申请号: 202010694439.4 申请日: 2020-07-17
公开(公告)号: CN111918339B 公开(公告)日: 2022-08-05
发明(设计)人: 刘贵忠;陈兴;方胶胶 申请(专利权)人: 西安交通大学
主分类号: H04W28/16 分类号: H04W28/16;H04W28/08;H04W72/04;H04L67/10
代理公司: 西安通大专利代理有限责任公司 61200 代理人: 李鹏威
地址: 710049 *** 国省代码: 陕西;61
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明公开了一种移动边缘网络中基于强化学习的AR任务卸载和资源分配方法,包括以下步骤:建立AR应用模型和设定优化目标;设定强化学习网络框架和马尔科夫决策过程的状态、动作和奖励;产生数据并存储到经验回访池中,直到达到一定的数量后开始训练;训练Critic和Actor网络直到网络收敛;网络训练好之后,只需要将状态值输入到Actor网络中就可以得到资源分配和任务卸载方案。本发明为了更加合理地利用资源,将AR应用分割成子任务并考虑了子任务之间的依赖关系,在资源受限和保证时延要求的条件下,可以智能高效的减少每一个用户终端的能量消耗。
搜索关键词: 移动 边缘 网络 基于 强化 学习 ar 任务 卸载 资源 分配 方法
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于西安交通大学,未经西安交通大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/202010694439.4/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top