[发明专利]基于深度学习的交通流量预测方法在审
申请号: | 202010641340.8 | 申请日: | 2020-07-06 |
公开(公告)号: | CN111815046A | 公开(公告)日: | 2020-10-23 |
发明(设计)人: | 金尚泰;董煦宸 | 申请(专利权)人: | 北京交通大学 |
主分类号: | G06Q10/04 | 分类号: | G06Q10/04;G06Q50/26;G06N3/04 |
代理公司: | 北京市商泰律师事务所 11255 | 代理人: | 姜威 |
地址: | 100044 北*** | 国省代码: | 北京;11 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明提供了一种基于深度学习的交通流量预测方法,包括:通过检测器采集交通流量数据信息,将交通信息的离散特征向量输入至DeepFM中的FM部分,得到具有离散特征间隐含关系的FM输出向量;将前t个时刻的当前检测器截面信息序列特征向量输入至基于检测器聚类标签的具有多层LSTM编码器的LSTM模型,得到LSTM输出向量;将前t个时刻的上游检测器各个车道的信息序列特征向量和所述的LSTM输出向量输入至注意力模型,得到具有当前检测器截面与上游各个车道之间的流量变化关系的注意力模型输出向量;根据FM输出向量和注意力模型输出向量对交通流量进行预测。该方法可以有效地提高短时交通流量预测的准确性。 | ||
搜索关键词: | 基于 深度 学习 交通 流量 预测 方法 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于北京交通大学,未经北京交通大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/202010641340.8/,转载请声明来源钻瓜专利网。
- 同类专利
- 专利分类
G06 计算;推算;计数
G06Q 专门适用于行政、商业、金融、管理、监督或预测目的的数据处理系统或方法;其他类目不包含的专门适用于行政、商业、金融、管理、监督或预测目的的处理系统或方法
G06Q10-00 行政;管理
G06Q10-02 .预定,例如用于门票、服务或事件的
G06Q10-04 .预测或优化,例如线性规划、“旅行商问题”或“下料问题”
G06Q10-06 .资源、工作流、人员或项目管理,例如组织、规划、调度或分配时间、人员或机器资源;企业规划;组织模型
G06Q10-08 .物流,例如仓储、装货、配送或运输;存货或库存管理,例如订货、采购或平衡订单
G06Q10-10 .办公自动化,例如电子邮件或群件的计算机辅助管理
G06Q 专门适用于行政、商业、金融、管理、监督或预测目的的数据处理系统或方法;其他类目不包含的专门适用于行政、商业、金融、管理、监督或预测目的的处理系统或方法
G06Q10-00 行政;管理
G06Q10-02 .预定,例如用于门票、服务或事件的
G06Q10-04 .预测或优化,例如线性规划、“旅行商问题”或“下料问题”
G06Q10-06 .资源、工作流、人员或项目管理,例如组织、规划、调度或分配时间、人员或机器资源;企业规划;组织模型
G06Q10-08 .物流,例如仓储、装货、配送或运输;存货或库存管理,例如订货、采购或平衡订单
G06Q10-10 .办公自动化,例如电子邮件或群件的计算机辅助管理