[发明专利]一种基于深度学习和无参考质量评价的图像生成方法有效
| 申请号: | 202010358981.2 | 申请日: | 2020-04-29 |
| 公开(公告)号: | CN111583213B | 公开(公告)日: | 2022-06-07 |
| 发明(设计)人: | 李晨;田丽华;袁田 | 申请(专利权)人: | 西安交通大学 |
| 主分类号: | G06T7/00 | 分类号: | G06T7/00;G06T7/10;G06T7/136;G06N3/04;G06N3/08 |
| 代理公司: | 西安通大专利代理有限责任公司 61200 | 代理人: | 王艾华 |
| 地址: | 710049 *** | 国省代码: | 陕西;61 |
| 权利要求书: | 查看更多 | 说明书: | 查看更多 |
| 摘要: | 本发明公开了一种基于深度学习和无参考质量评价的图像生成方法,使用深度学习神经网络模型中的特征图进行分析,找出控制图像中某个单元类的控制单元,控制单元就是神经网络中的某一层或者某几层特征图,然后通过修改网络中该层特征图的参数,如激活函数等,达到对于单元类的增强展示和抑制展示的效果,这个方法不同于传统的图像生成,也不同于深度学习中的GAN网络,传统的图像生成是对于图像的像素值进行计算处理,以及进行传统的灰度变换和裁剪平移等,GAN网络更多是随机生成的图像,不具有解释性,本发明是可以看到具体的控制单元特征图和参数的。 | ||
| 搜索关键词: | 一种 基于 深度 学习 参考 质量 评价 图像 生成 方法 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于西安交通大学,未经西安交通大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/202010358981.2/,转载请声明来源钻瓜专利网。





