[发明专利]一种脉冲神经网络权重图像化比较预测及网络抗干扰方法有效
| 申请号: | 202010281351.X | 申请日: | 2020-04-10 |
| 公开(公告)号: | CN111476368B | 公开(公告)日: | 2022-12-23 |
| 发明(设计)人: | 李凡;匡平;郑庭颖;何明耘;徐翔 | 申请(专利权)人: | 电子科技大学 |
| 主分类号: | G06N3/08 | 分类号: | G06N3/08;G06N3/04;G06V10/774;G06V10/82;G06V10/74 |
| 代理公司: | 北京众合诚成知识产权代理有限公司 11246 | 代理人: | 刘妮 |
| 地址: | 610051 *** | 国省代码: | 四川;51 |
| 权利要求书: | 查看更多 | 说明书: | 查看更多 |
| 摘要: | 本发明公开了面向图像识别任务领域一种脉冲神经网络权重图像化比较预测及网络抗干扰方法,所述的方法包括以下步骤:1)对训练的脉冲神经网络使用权重图像化比较WGC方案进行预测;2)对模型训练得到的权重进行增强处理。提出权重图像化比较的网络预测方案,通过将新测试数据与网络学习到的每个过滤器二维化权重做图像相似度比较,输出最相近的过滤器映射的标签类别完成对数据的类别预测。本发明验证了该方案下的两种指标的表现。结果表明该方案对于提升网络的预测精度和训练收敛表现有着显著的帮助。通过对权重采取若干组的干扰添加,使得网络得以在标准训练集训练后能够相当好地应对测试数据的较大扰动干扰,显著提升了网络的鲁棒性。 | ||
| 搜索关键词: | 一种 脉冲 神经网络 权重 图像 比较 预测 网络 抗干扰 方法 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于电子科技大学,未经电子科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/202010281351.X/,转载请声明来源钻瓜专利网。
- 彩色图像和单色图像的图像处理
- 图像编码/图像解码方法以及图像编码/图像解码装置
- 图像处理装置、图像形成装置、图像读取装置、图像处理方法
- 图像解密方法、图像加密方法、图像解密装置、图像加密装置、图像解密程序以及图像加密程序
- 图像解密方法、图像加密方法、图像解密装置、图像加密装置、图像解密程序以及图像加密程序
- 图像编码方法、图像解码方法、图像编码装置、图像解码装置、图像编码程序以及图像解码程序
- 图像编码方法、图像解码方法、图像编码装置、图像解码装置、图像编码程序、以及图像解码程序
- 图像形成设备、图像形成系统和图像形成方法
- 图像编码装置、图像编码方法、图像编码程序、图像解码装置、图像解码方法及图像解码程序
- 图像编码装置、图像编码方法、图像编码程序、图像解码装置、图像解码方法及图像解码程序





