[发明专利]一种基于马尔科夫图和深度学习的恶意软件分类方法有效
申请号: | 202010088882.7 | 申请日: | 2020-02-12 |
公开(公告)号: | CN111259397B | 公开(公告)日: | 2022-04-19 |
发明(设计)人: | 王俊峰;袁保国;青先国;刘东 | 申请(专利权)人: | 四川大学 |
主分类号: | G06F21/56 | 分类号: | G06F21/56;G06K9/62;G06N3/04;G06N3/08 |
代理公司: | 成都禾创知家知识产权代理有限公司 51284 | 代理人: | 裴娟 |
地址: | 610065 四川*** | 国省代码: | 四川;51 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种基于马尔科夫图和深度学习的恶意软件分类方法,首先统计恶意软件字节转移频率,将其转换为马尔科夫图像,然后使用深度卷积神经网络完成恶意软件分类;其中设计的深度卷积神经网络结构是基于VGG16重新设计而成,其卷积层和池化层的深度与VGG16相同,一共包含13个卷积层、5个池化层;与VGG16不同的是,本发明设计的深度卷积神经网络只有一个全连接层,其输出维度为1024。本发明方法适用性广,且能有效减小字节信息的冗余;不依赖于预先训练模型,具有更高的分类准确率。 | ||
搜索关键词: | 一种 基于 马尔科夫图 深度 学习 恶意 软件 分类 方法 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于四川大学,未经四川大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/202010088882.7/,转载请声明来源钻瓜专利网。
- 上一篇:一种卡骨
- 下一篇:一种管件孔位置度检测装置