[发明专利]基于深度神经网络的图像分析方法及装置在审
申请号: | 202010048656.6 | 申请日: | 2020-01-16 |
公开(公告)号: | CN111260632A | 公开(公告)日: | 2020-06-09 |
发明(设计)人: | 江瑞;章博亨 | 申请(专利权)人: | 清华大学 |
主分类号: | G06T7/00 | 分类号: | G06T7/00;G06T7/11;G06T7/136;G06T7/194;G06T7/90;G06K9/62 |
代理公司: | 北京鸿元知识产权代理有限公司 11327 | 代理人: | 张超艳;董永辉 |
地址: | 100084 北京市海淀区北京*** | 国省代码: | 北京;11 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明提供一种基于深度神经网络的图像分析方法及装置,包括:获得医疗影像图像;去除医疗影像图像中的背景;对去除背景的医疗影像图像进行区块划分,得到构成医疗影像图像各区域;构建多种卷积神经网络模型,将多种卷积神经网络模型进行加权组合形成融合模型,对融合模型进行训练,融合模型输入是医疗影像图像的颜色通道,输出为所述医疗影像图像的类别的概率,类别包括肿瘤,类别的概率包括肿瘤概率,表示医疗影像图像为肿瘤的图像的概率;将划分后的各区域的医疗影像图像输入训练后的融合模型,得到各区域的医疗影像图像所属类别的概率,从而生成医疗影像的类别概率热图。上述方法及装置能够客观准确的分析医疗影像图像的肿瘤概率。 | ||
搜索关键词: | 基于 深度 神经网络 图像 分析 方法 装置 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于清华大学,未经清华大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/202010048656.6/,转载请声明来源钻瓜专利网。
- 上一篇:一种智能提醒方法、装置、存储介质及终端
- 下一篇:单向阀水上行走鞋
- 彩色图像和单色图像的图像处理
- 图像编码/图像解码方法以及图像编码/图像解码装置
- 图像处理装置、图像形成装置、图像读取装置、图像处理方法
- 图像解密方法、图像加密方法、图像解密装置、图像加密装置、图像解密程序以及图像加密程序
- 图像解密方法、图像加密方法、图像解密装置、图像加密装置、图像解密程序以及图像加密程序
- 图像编码方法、图像解码方法、图像编码装置、图像解码装置、图像编码程序以及图像解码程序
- 图像编码方法、图像解码方法、图像编码装置、图像解码装置、图像编码程序、以及图像解码程序
- 图像形成设备、图像形成系统和图像形成方法
- 图像编码装置、图像编码方法、图像编码程序、图像解码装置、图像解码方法及图像解码程序
- 图像编码装置、图像编码方法、图像编码程序、图像解码装置、图像解码方法及图像解码程序