[发明专利]基于一致性训练的自监督领域自适应深度学习方法有效

专利信息
申请号: 201911372719.7 申请日: 2019-12-27
公开(公告)号: CN111144565B 公开(公告)日: 2020-10-27
发明(设计)人: 许娇龙;肖良;朱琪;聂一鸣 申请(专利权)人: 中国人民解放军军事科学院国防科技创新研究院
主分类号: G06N3/08 分类号: G06N3/08;G06N3/04;G06K9/62
代理公司: 中国兵器工业集团公司专利中心 11011 代理人: 刘瑞东
地址: 100071 *** 国省代码: 北京;11
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明公开了一种基于一致性训练的自监督领域自适应深度学习方法。该方法首先构建一个数据增强变换集合,对每一个变换定义一个标签。针对源域样本和其对应的类别标签,构建分类任务;对源域和目标域样本应用所述数据增强变换,通过最小化预测该变换类别的误差,构建自监督学习任务;针对源域和目标域样本,通过最小化变换后的样本和原始样本在分类任务上的输出的KL散度(Kullback‑Leibler Divergence),构建一致性训练任务;构建一个多任务学习网络,将所述的分类、自监督学习和一致性训练任务进行联合训练。该方法无需对目标域样本进行标注,能有效地学习目标域特征表示,提升目标域上样本分类和识别的性能。本申请还公开了一种领域自适应深度学习可读存储介质,同样具有上述有益效果。
搜索关键词: 基于 一致性 训练 监督 领域 自适应 深度 学习方法
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中国人民解放军军事科学院国防科技创新研究院,未经中国人民解放军军事科学院国防科技创新研究院许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201911372719.7/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top