[发明专利]一种获取多层次上下文语义的文本分类方法有效
| 申请号: | 201911246473.9 | 申请日: | 2019-12-06 |
| 公开(公告)号: | CN111026845B | 公开(公告)日: | 2021-09-21 |
| 发明(设计)人: | 姜庆鸿;张华平;商建云 | 申请(专利权)人: | 北京理工大学 |
| 主分类号: | G06F16/33 | 分类号: | G06F16/33;G06F16/35;G06N3/04;G06N3/08 |
| 代理公司: | 北京正阳理工知识产权代理事务所(普通合伙) 11639 | 代理人: | 张利萍 |
| 地址: | 100081 *** | 国省代码: | 北京;11 |
| 权利要求书: | 查看更多 | 说明书: | 查看更多 |
| 摘要: | 本发明涉及一种获取多层次上下文语义的文本分类方法,属于自然语言处理文本分类技术领域。使用稠密连接的双向循环神经网络Bi‑LSTM获取多层次的上下文语义,使用卷积神经网络CNN的max‑pooling层对抽取的多层次上下文语义进行语义特征提取,再将文本中每个词的词向量和该词的多层次上下文语义特征向量进行连接得到的结果输入到分类层,实现文本分类。所述方法最大程度的保留了上下文语义信息;每个中间层都能获取到一定层次的语义,且将当前层获得的语义传递到下一层,获取更深层次的语义;极大的降低了神经网络梯度消失的概率;既保留了卷积神经网络特征抽取能力强的优点,又省去了卷积层,从而降低了训练参数和时间复杂度。 | ||
| 搜索关键词: | 一种 获取 多层次 上下文 语义 文本 分类 方法 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于北京理工大学,未经北京理工大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201911246473.9/,转载请声明来源钻瓜专利网。





