[发明专利]基于深度学习的磁共振信号的去J耦合方法有效

专利信息
申请号: 201911226733.6 申请日: 2019-12-04
公开(公告)号: CN110940944B 公开(公告)日: 2020-11-10
发明(设计)人: 索斐;杨钰;蔡聪波;陈忠 申请(专利权)人: 厦门大学
主分类号: G01R33/46 分类号: G01R33/46;G06N3/04;G06N3/08
代理公司: 厦门南强之路专利事务所(普通合伙) 35200 代理人: 马应森
地址: 361005 *** 国省代码: 福建;35
权利要求书: 查看更多 说明书: 查看更多
摘要: 基于深度学习的磁共振信号的去J耦合方法,涉及磁共振信号。根据磁共振波谱信号的特征,构建网络输入数据的数学模型和网络标签,即无J耦合现象的频谱实部的数学模型,由数学模型生成仿真信号,构建训练集数据和测试集数据;搭建网络模型,设置好相关的训练参数;将训练集数据输入到网络模型中训练网络,调整网络参数,直至损失函数下降至收敛并趋于稳定,得到功能化的网络模型;将测试集数据信号输入到训练后的功能化的网络模型中,得到经网络去耦合得到的理想吸收谱图,并与标签进行比较以验证网络的性能。实现去耦合以及去噪的功能,实现端到端的功能,无需对谱信号进行预处理等其他辅助手段操作,使用神经网络真正实现去耦合去噪功能。
搜索关键词: 基于 深度 学习 磁共振 信号 耦合 方法
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于厦门大学,未经厦门大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201911226733.6/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top