[发明专利]基于深度复值全卷积神经网络的极化SAR图像分类方法有效

专利信息
申请号: 201910968153.8 申请日: 2019-10-12
公开(公告)号: CN110728324B 公开(公告)日: 2022-03-04
发明(设计)人: 吴艳;曹宜策;李明;梁文楷;张鹏 申请(专利权)人: 西安电子科技大学
主分类号: G06V20/13 分类号: G06V20/13;G06V10/764;G06V10/82;G06K9/62;G06N3/04
代理公司: 陕西电子工业专利中心 61205 代理人: 王品华;张问芬
地址: 710071*** 国省代码: 陕西;61
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明公开了一种基于深度复值全卷积神经网络的极化SAR图像分类方法,主要解决现有技术分类精度低的问题。其方案为:输入待分类极化SAR图像的极化相干矩阵T及其真实地物标记G,并对T归一化;提取归一化后矩阵的输入复值向量构造特征矩阵F;在G中选取像素点生成新的真实地物标记G';在F和G'上通过滑动窗分别生成特征集和标记集,对该两者进行随机选取构成训练集;构造深度复值全卷积神经网络,并初始化;利用训练集对初始化后的深度复值全卷积网络进行训练;将待分类极化SAR图像输入到训练好的深度复值全卷积神经网络中,得到分类结果;本发明有效地抑制相干斑噪声干扰,提高了分类准确率,可用于实现极化SAR图像的目标检测或分类识别。
搜索关键词: 基于 深度 复值全 卷积 神经网络 极化 sar 图像 分类 方法
【主权项】:
1.一种基于深度复值全卷积神经网络的极化SAR图像分类方法,其特征在于,包括如下:/n(1)输入一幅待分类的极化SAR图像相干矩阵T及其对应的真实地物标记图G,并对相干矩阵进行归一化,得到归一化后的相干矩阵
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于西安电子科技大学,未经西安电子科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201910968153.8/,转载请声明来源钻瓜专利网。

同类专利
专利分类
×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top