[发明专利]基于深度复值全卷积神经网络的极化SAR图像分类方法有效
| 申请号: | 201910968153.8 | 申请日: | 2019-10-12 |
| 公开(公告)号: | CN110728324B | 公开(公告)日: | 2022-03-04 |
| 发明(设计)人: | 吴艳;曹宜策;李明;梁文楷;张鹏 | 申请(专利权)人: | 西安电子科技大学 |
| 主分类号: | G06V20/13 | 分类号: | G06V20/13;G06V10/764;G06V10/82;G06K9/62;G06N3/04 |
| 代理公司: | 陕西电子工业专利中心 61205 | 代理人: | 王品华;张问芬 |
| 地址: | 710071*** | 国省代码: | 陕西;61 |
| 权利要求书: | 查看更多 | 说明书: | 查看更多 |
| 摘要: | 本发明公开了一种基于深度复值全卷积神经网络的极化SAR图像分类方法,主要解决现有技术分类精度低的问题。其方案为:输入待分类极化SAR图像的极化相干矩阵T及其真实地物标记G,并对T归一化;提取归一化后矩阵的输入复值向量构造特征矩阵F;在G中选取像素点生成新的真实地物标记G';在F和G'上通过滑动窗分别生成特征集和标记集,对该两者进行随机选取构成训练集;构造深度复值全卷积神经网络,并初始化;利用训练集对初始化后的深度复值全卷积网络进行训练;将待分类极化SAR图像输入到训练好的深度复值全卷积神经网络中,得到分类结果;本发明有效地抑制相干斑噪声干扰,提高了分类准确率,可用于实现极化SAR图像的目标检测或分类识别。 | ||
| 搜索关键词: | 基于 深度 复值全 卷积 神经网络 极化 sar 图像 分类 方法 | ||
【主权项】:
1.一种基于深度复值全卷积神经网络的极化SAR图像分类方法,其特征在于,包括如下:/n(1)输入一幅待分类的极化SAR图像相干矩阵T及其对应的真实地物标记图G,并对相干矩阵进行归一化,得到归一化后的相干矩阵
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于西安电子科技大学,未经西安电子科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201910968153.8/,转载请声明来源钻瓜专利网。





