[发明专利]一种图像的自动精细分割方法有效
申请号: | 201910950415.8 | 申请日: | 2019-10-08 |
公开(公告)号: | CN110706234B | 公开(公告)日: | 2022-05-13 |
发明(设计)人: | 周乾伟;詹琦梁;陈禹行;陶鹏;刘一波;李小薪;胡海根 | 申请(专利权)人: | 浙江工业大学 |
主分类号: | G06T7/11 | 分类号: | G06T7/11;G06T7/66;G06T7/187;G06T5/30;G06N3/04;G06V10/764;G06V10/82 |
代理公司: | 杭州浙科专利事务所(普通合伙) 33213 | 代理人: | 吴秉中 |
地址: | 310014 *** | 国省代码: | 浙江;33 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种图像的自动精细分割方法,包括以下步骤:1)通过具有实例分割功能的Mask RCNN算法对输入的原始图像进行初步的分割,得到初始掩膜;2)通过SLIC超像素分割算法对原始图像进行超像素分割得到超像素块,并结合超像素块对初始掩膜的边缘进行扩展;3)结合扩展后的掩膜和初始掩膜进行形态学操作得到GrabCut算法分割的初始三元图;4)利用改进的GrabCut算法建立高斯混合模型,并反复迭代高斯混合模型参数,最后利用最大流最小割算法得到最优目标分割结果。本发明分割所得到的物体掩膜,分割效果在直观上能保证物体的完整性,基本能够将物体的所有信息都分割出来,边缘精度较高,具有很好的视觉效果。 | ||
搜索关键词: | 一种 图像 自动 精细 分割 方法 | ||
【主权项】:
1.一种图像的自动精细分割方法,其特征在于,包括以下步骤:/n1)通过具有实例分割功能的Mask RCNN算法对输入的原始图像进行初步的分割,得到初始掩膜;/n2)通过SLIC超像素分割算法对原始图像进行超像素分割得到超像素块,并结合超像素块对初始掩膜的边缘进行扩展;/n3)结合扩展后的掩膜和初始掩膜进行形态学操作得到GrabCut算法分割的初始三元图;/n4)利用改进的GrabCut算法建立高斯混合模型,并反复迭代高斯混合模型参数,最后利用最大流最小割算法得到最优目标分割结果。/n
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于浙江工业大学,未经浙江工业大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201910950415.8/,转载请声明来源钻瓜专利网。
- 彩色图像和单色图像的图像处理
- 图像编码/图像解码方法以及图像编码/图像解码装置
- 图像处理装置、图像形成装置、图像读取装置、图像处理方法
- 图像解密方法、图像加密方法、图像解密装置、图像加密装置、图像解密程序以及图像加密程序
- 图像解密方法、图像加密方法、图像解密装置、图像加密装置、图像解密程序以及图像加密程序
- 图像编码方法、图像解码方法、图像编码装置、图像解码装置、图像编码程序以及图像解码程序
- 图像编码方法、图像解码方法、图像编码装置、图像解码装置、图像编码程序、以及图像解码程序
- 图像形成设备、图像形成系统和图像形成方法
- 图像编码装置、图像编码方法、图像编码程序、图像解码装置、图像解码方法及图像解码程序
- 图像编码装置、图像编码方法、图像编码程序、图像解码装置、图像解码方法及图像解码程序