[发明专利]基于长短期记忆神经网络的短期光伏发电量预测方法在审

专利信息
申请号: 201910947897.1 申请日: 2019-10-08
公开(公告)号: CN111222674A 公开(公告)日: 2020-06-02
发明(设计)人: 余运俊;曹骏飞 申请(专利权)人: 南昌大学
主分类号: G06Q10/04 分类号: G06Q10/04;G06Q50/06;G06N3/04;G06N3/08
代理公司: 南昌新天下专利商标代理有限公司 36115 代理人: 施秀瑾
地址: 330031 江西省*** 国省代码: 江西;36
权利要求书: 查看更多 说明书: 查看更多
摘要: 一种基于长短期记忆神经网络的短期光伏发电量预测方法,利用长短期记忆神经网络(LSTMNN)预测太阳辐射量间接计算出光伏发电量,包括以下步骤:获取相关地区光伏系统所接收的太阳辐射量数据及相应的历史气象数据信息;将获取的数据归一化处理,分为测试样本和训练样本两部分,建立LSTMNN进行训练;以预测日之前30天的光伏数据作为输入数据,预测当日的太阳辐射量;将预测结果反归一化处理即可得到当日的太阳辐射量数据。本发明建立的预测模型能够保存较长时间太阳辐射量序列所包含的季节性、波动性和趋势性的信息,克服传统递归神经网络训练过程中梯度消失(爆炸)的问题,进一步提高了预测精度。
搜索关键词: 基于 短期 记忆 神经网络 发电量 预测 方法
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于南昌大学,未经南昌大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201910947897.1/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top