[发明专利]基于BP神经网络的表面式永磁同步电机模型预测控制方法有效

专利信息
申请号: 201910817795.8 申请日: 2019-08-30
公开(公告)号: CN110535396B 公开(公告)日: 2021-03-30
发明(设计)人: 李耀华;赵承辉;秦玉贵;周逸凡;秦辉;苏锦仕 申请(专利权)人: 长安大学
主分类号: H02P23/00 分类号: H02P23/00;H02P23/04;H02P23/30;H02P27/12
代理公司: 西安通大专利代理有限责任公司 61200 代理人: 郭瑶
地址: 710064*** 国省代码: 陕西;61
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明公开了基于BP神经网络的表面式永磁同步电机模型预测控制方法,本发明采用BP神经网络替代表面式永磁同步电机模型预测算法,BP神经网络具有强大的非线性拟合和模式识别分类的能力,其分布式并行运算的特点可以大大减少算法的运算时间和运算负担,提高系统的及时性,并且BP神经网络替代模型预测算法的准确率和效果均令人满意,其选择最优电压矢量的准确率可以达到88.34%,由于神经网络没有反馈和纠正能力,通过设置一个开关量和阈值切换神经网络工作模式和MPC工作模式可以有效解决BP神经网络动态阶跃下的失控问题。
搜索关键词: 基于 bp 神经网络 表面 永磁 同步电机 模型 预测 控制 方法
【主权项】:
1.基于BP神经网络的表面式永磁同步电机模型预测控制方法,其特征在于,包括以下步骤:/n步骤一,确定表面式永磁同步电机模型预测控制算法中的输入量和输出量,以及神经网络的输入量与输出量,并确定电机参考转速和负载转矩的变化范围;/n步骤二,按照恒定参考转速下负载转矩阶跃和恒定负载转矩下参考转速阶跃两种方式将不同参考转速下负载转矩变化的情况和不同负载转矩下参考转速变化的情况按照一定的步长和间隔遍历取到,并将相应产生的上述输入量的数据送入表面式永磁同步电机模型预测控制算法中,生成未来控制周期内模型预测控制算法选择的最优电压矢量序列,并且将各个输入量的取值与对应选择出来的最优电压矢量对应组合成BP神经网络的训练样本;/n步骤三,构建BP神经网络拓扑模型;/n步骤四,将步骤二中的训练样本数据进行归一化处理,将归一化处理后的训练样本输入已构建BP神经网络拓扑模型中进行离线训练学习,得到符合要求的权值阈值;/n步骤五,将离线训练好的BP神经网络嵌入到表面式永磁同步电机模型预测直接转矩控制系统中与模型预测算法串行设计,用于替代模型预测控制算法进行未来控制周期内电机最优电压矢量选择的工作和功能;/n步骤六,在模型预测算法模块和BP神经网络的串行设计之间设置一个开关量,当转矩误差大于一定阈值时,开关量将工作模式切换为模型预测算法进行最优电压矢量的选择工作;当转矩误差值小于该阈值时,均使用神经网络进行电压矢量的选择工作。/n
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于长安大学,未经长安大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201910817795.8/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top