[发明专利]一种基于生成对抗网络的多姿态人脸图像正面化方法有效
申请号: | 201910806159.5 | 申请日: | 2019-08-29 |
公开(公告)号: | CN110543846B | 公开(公告)日: | 2021-12-17 |
发明(设计)人: | 张星明;容昌乐;林育蓓 | 申请(专利权)人: | 华南理工大学 |
主分类号: | G06K9/00 | 分类号: | G06K9/00;G06K9/62;G06N3/04;G06N3/08 |
代理公司: | 广州市华学知识产权代理有限公司 44245 | 代理人: | 冯炳辉 |
地址: | 510640 广*** | 国省代码: | 广东;44 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种基于生成对抗网络的多姿态人脸正面化方法,在训练阶段,首先收集各种姿态的人脸图片作为数据集,然后输入多组同一人的正脸图像和非正脸图像,通过新设计的损失函数,交替训练生成网络和判别网络,直到损失函数的值稳定收敛。在训练完成后的测试阶段,对输入的各种姿态人脸图片,本发明都可以将它们矫正成正脸图像。矫正后的图像不仅清晰,并且保留了原人脸的身份特征,可以用于人脸识别工作。本发明将有效减缓姿态因素对人脸识别造成的负面影响,有利于非限制条件下人脸识别实际应用的发展。 | ||
搜索关键词: | 一种 基于 生成 对抗 网络 多姿 态人脸 图像 正面 方法 | ||
【主权项】:
1.一种基于生成对抗网络的多姿态人脸图像正面化方法,其特征在于,包括以下步骤:/n1)收集各个姿态的人脸图像作为训练集和测试集,必须确保输入的每一张任意姿态的人脸图像Ia,都能在数据集中找到同一人物非合成的正脸图像Ig;/n2)在训练阶段,把训练集中的任意姿态的人脸图像Ia输入生成器G,得到修正编码X2和合成的正脸图像If,把非合成的正脸图像Ig输入生成器G,得到正脸编码X3;/n3)把合成的正脸图像If或非合成的正脸图像Ig输入判别网络D,判别网络D判断输入的人脸图像是合成的还是非合成的,再把合成的正脸图像If或非合成的正脸图像Ig输入人脸身份特征提取器F,通过F提取人脸图像的人物身份特征;/n4)把步骤3)的判别结果和提取的人物身份特征、合成的正脸图像If、非合成的正脸图像Ig、修正编码X2和正脸编码X3带入各个预先设计好的损失函数,交替训练生成器G和判别网络D直至训练结束;/n5)在测试阶段,把任意姿态的人脸图像Ia输入已经训练完成的生成器G,能够得到一张合成的正脸图像If,通过直接观测合成的正脸图像If的质量来验证效果。/n
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于华南理工大学,未经华南理工大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201910806159.5/,转载请声明来源钻瓜专利网。