[发明专利]一种基于用户评论的推荐算法在审
申请号: | 201910746922.X | 申请日: | 2019-08-08 |
公开(公告)号: | CN110648163A | 公开(公告)日: | 2020-01-03 |
发明(设计)人: | 印鉴;林志平;刘威 | 申请(专利权)人: | 中山大学 |
主分类号: | G06Q30/02 | 分类号: | G06Q30/02;G06Q30/06;G06N3/04 |
代理公司: | 44102 广州粤高专利商标代理有限公司 | 代理人: | 林丽明 |
地址: | 510275 广东*** | 国省代码: | 广东;44 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明提供一种基于用户评论的推荐算法,该方法基于深度学习的评论推荐系统,根据用户过去的浏览购买和评论记录和商品的评分记录及购买过该商品的顾客的评论,推测用户对该商品的喜好程度,最后推荐系统对评分进行排序,给用户推荐评分高的前N种商品。本发明利用自然语言处理技术对评论文本信息的进行向量化,并根据注意力机制算法计算每条评论的重要性和每条评论对潜在顾客的影响,采用卷积神经网络捕捉用户商品的交互特征矩阵,因此生成用户商品的交互向量,最后将生成交互向量输入到FM预测机预测评分,预测评分越高用户可能越喜欢该商品,最后根据评分进行排序给用户推荐评分前N个商品。 | ||
搜索关键词: | 评论 推荐系统 用户商品 用户推荐 向量 排序 自然语言处理技术 卷积神经网络 矩阵 注意力机制 交互特征 评分记录 评论文本 潜在顾客 算法计算 用户评论 过去的 向量化 预测机 预测 算法 购买 喜好 捕捉 浏览 顾客 记录 学习 | ||
【主权项】:
1.一种基于用户评论的推荐算法,其特征在于,包括以下步骤:/nS1:将用户ID,目标商品ID,用户评论集合,目标商品评论集合,用户购买过的商品ID集合,和购买过目标商品的用户ID集合编码为固定维度的向量;/nS2:根据注意力机制计算目标商品评论对用户的重要性,并结合用户购买历史记录与购买过目标商品的顾客的评论,用神经网络提取用户和目标商品的特征向量;/nS3:用S2步骤后生成的用户特征向量和商品特征向量通过向量的外积乘转化特征矩阵,用卷积神经网络CNN在特征矩阵张提取用户商品的交互特征,并编码为用户商品的交互向量;/nS4:将用户商品的交互向量输入到FM预测机,预测用户对目标商品的评分。并对其他商品进行上述操作,根据评分进行排序,给用户推荐评分高的前N个商品。/n
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中山大学,未经中山大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201910746922.X/,转载请声明来源钻瓜专利网。
- 上一篇:分享APP绑定关系解决方案
- 下一篇:一种节点边际电价区间的确定方法和装置