[发明专利]基于深度迁移学习与邻域降噪的分类方法有效
申请号: | 201910735414.1 | 申请日: | 2019-08-09 |
公开(公告)号: | CN110503140B | 公开(公告)日: | 2022-04-01 |
发明(设计)人: | 林连雷;杨京礼;陈采璐 | 申请(专利权)人: | 哈尔滨工业大学 |
主分类号: | G06V10/764 | 分类号: | G06V10/764;G06V10/82;G06K9/62;G06N3/04;G06N3/08;G06T5/00 |
代理公司: | 北京慕达星云知识产权代理事务所(特殊普通合伙) 11465 | 代理人: | 曹鹏飞 |
地址: | 150001 黑龙*** | 国省代码: | 黑龙江;23 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种基于深度迁移学习与邻域降噪的分类方法,将在源数据集上预训练的CNN浅层网络权值参数迁移至目标数据集,通过网络微调,随机初始化目标数据集网络训练的CNN深层网络权值参数,并在目标数据集上重新训练,完成基于迁移学习的高光谱图像分类,然后,再对通过迁移学习输出的高光谱图像分类的图像标记结果进行基于八邻域点众数标签的最优邻域点降噪,最终输出降噪后的图像分类结果。 | ||
搜索关键词: | 基于 深度 迁移 学习 邻域 分类 方法 | ||
【主权项】:
1.基于深度迁移学习与邻域降噪的分类方法,其特征在于,包括如下步骤:/n步骤一,采集由高光谱图像组成的源数据集并进行CNN网络预训练,获得预训练网络和CNN浅层网络权值参数;/n步骤二,采集由所述高光谱图像组成的目标数据集并进行CNN网络训练,将所述CNN浅层网络权值参数迁移至所述CNN网络,对所述CNN网络进行网络微调,随机初始化所述目标数据集网络训练的CNN深层网络权值参数,并进行训练获得目标训练网络,完成迁移学习输出所述目标数据集分类后的目标数据集类别标签;/n步骤三,根据所述目标数据集类别标签获得所述目标数据集的所述高光谱图像的像元标签,进行基于八邻域点众数标签的最优邻域点降噪,输出去噪后的所述目标数据集类别标签。/n
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于哈尔滨工业大学,未经哈尔滨工业大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201910735414.1/,转载请声明来源钻瓜专利网。