[发明专利]一种分区域训练的表情动画转换方法及系统有效
| 申请号: | 201910721265.3 | 申请日: | 2019-08-06 |
| 公开(公告)号: | CN110415261B | 公开(公告)日: | 2021-03-16 |
| 发明(设计)人: | 迟静;叶亚男;于志平 | 申请(专利权)人: | 山东财经大学 |
| 主分类号: | G06T7/11 | 分类号: | G06T7/11;G06T5/00;G06T5/50 |
| 代理公司: | 济南圣达知识产权代理有限公司 37221 | 代理人: | 张庆骞 |
| 地址: | 250014 山东*** | 国省代码: | 山东;37 |
| 权利要求书: | 查看更多 | 说明书: | 查看更多 |
| 摘要: | 本公开提供了一种分区域训练的表情动画转换方法及系统。其中,一种分区域训练的表情动画转换方法包括:检测人脸图像的关键特征点位置,并将人脸图像划分成若干个区域;利用具有表情映射关系的CycleGan模型对每个区域进行单独训练,得到表情转换后每个区域的结果图;CycleGan模型的总损失函数等于对抗性损失函数和循环一致损失函数之和,循环一致损失函数等于欧氏距离约束项和协方差约束项分别与相应权重相乘的累加和;将转换后每个区域的结果图合成完整的人脸表情图像,采用像素加权融合算法平滑合成的边界。其无需数据源驱动,可直接在源人脸动画序列上实时地转换生成真实自然的新表情序列,且对于语音视频可保证新面部表情序列与源音频的同步。 | ||
| 搜索关键词: | 一种 区域 训练 表情 动画 转换 方法 系统 | ||
【主权项】:
1.一种分区域训练的表情动画转换方法,其特征在于,包括:检测人脸图像的关键特征点位置,并将人脸图像划分成若干个区域;利用具有表情映射关系的CycleGan模型对每个区域进行单独训练,得到表情转换后每个区域的结果图;其中,CycleGan模型的总损失函数等于对抗性损失函数和循环一致损失函数之和,循环一致损失函数等于欧氏距离约束项和协方差约束项分别与相应权重相乘的累加和;将转换后每个区域的结果图合成完整的人脸表情图像,采用像素加权融合算法平滑合成的边界。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于山东财经大学,未经山东财经大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201910721265.3/,转载请声明来源钻瓜专利网。





