[发明专利]基于深度学习局部与非局部信息的超分辨率重建方法有效
申请号: | 201910711664.1 | 申请日: | 2019-08-02 |
公开(公告)号: | CN112308772B | 公开(公告)日: | 2022-11-01 |
发明(设计)人: | 何小海;占文枢;陈正鑫;任超;熊淑华;王正勇;滕奇志 | 申请(专利权)人: | 四川大学 |
主分类号: | G06T3/40 | 分类号: | G06T3/40;G06N3/04;G06N3/08 |
代理公司: | 暂无信息 | 代理人: | 暂无信息 |
地址: | 610065 四川*** | 国省代码: | 四川;51 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种基于深度学习局部与非局部信息的超分辨率重建方法。主要包括以下步骤:搭建基于深度学习局部与非局部信息的超分辨率卷积神经网络模型,包括局部网络和非局部增强网络两大模块;利用前一步骤搭建的卷积神经网络,分别训练不同放大因子的超分辨率模型;以训练好的超分辨率重建模型为基础,将低分辨率图像作为输入,得到最终的超分辨率重建图像。本发明所述的方法能够利用非局部增强网络挖掘到图像更广泛区域的有效信息,因此可以有效地对低分辨率图像进行超分辨率重建,能获得很好的主客观效果,是一种有效的低分辨率图像复原方法。 | ||
搜索关键词: | 基于 深度 学习 局部 信息 分辨率 重建 方法 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于四川大学,未经四川大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201910711664.1/,转载请声明来源钻瓜专利网。
- 上一篇:一种传样杆
- 下一篇:一种直流侧辅助换相的混合式换流器拓扑结构及其控制方法