[发明专利]一种基于问题生成和卷积神经网络的常识问答方法有效

专利信息
申请号: 201910708387.9 申请日: 2019-08-01
公开(公告)号: CN110647619B 公开(公告)日: 2023-05-05
发明(设计)人: 周瑞莹;梁艺阐;印鉴 申请(专利权)人: 中山大学
主分类号: G06F16/332 分类号: G06F16/332;G06N3/0464;G06N3/08
代理公司: 广州粤高专利商标代理有限公司 44102 代理人: 林丽明
地址: 510275 广东*** 国省代码: 广东;44
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明提供一种基于问题生成和卷积神经网络的常识问答方法,该方法通过BERT语言模型将内容‑问题编码成向量序列,传入问题生成模块,再传入共享的BERT语言模型,然后将内容‑问题‑答案组成的三元组通过BERT语言模型,输出的内容‑问题‑答案的编码序列传入答案选择模块,通过卷积神经网络对其做分类,最后,模型得到的评分来选取最优的选项作为模型选出的候选答案。
搜索关键词: 一种 基于 问题 生成 卷积 神经网络 常识 问答 方法
【主权项】:
1.一种基于问题生成和卷积神经网络的常识问答方法,其特征在于,包括以下步骤:/nS1:构建内容-问题的输入序列,传入BERT语言模型,编码好的向量序列再传入问题生成模块,问题生成模块学习到了内容与问题中的重要信息,再将序列传入共享的BERT语言模型,其中,BERT语言模型是一种预训练的深度双向Transformer语言模型;/nS2:构建内容-问题-答案的输入序列,传入共享的BERT语言模型,编码成向量形式表示句子;/nS3:经过BERT语言模型后的内容-问题-答案编码序列,传入文本卷积神经网络中训练,得到对于每个候选项的评分,通过对评分的排序,选取最高的得分选项成为预测答案;/nS4:完成训练阶段,再将测试集的样例,表示成内容-问题-答案编码序列,放入模型中进行预测答案。/n
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中山大学,未经中山大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201910708387.9/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top