[发明专利]一种基于紧致三元损失的行人再识别方法有效
申请号: | 201910614505.X | 申请日: | 2019-07-09 |
公开(公告)号: | CN110321862B | 公开(公告)日: | 2023-01-10 |
发明(设计)人: | 张重;司统振;刘爽 | 申请(专利权)人: | 天津师范大学 |
主分类号: | G06V20/10 | 分类号: | G06V20/10;G06V10/774;G06V10/82;G06N3/04;G06N3/06 |
代理公司: | 北京中政联科专利代理事务所(普通合伙) 11489 | 代理人: | 陈超 |
地址: | 300387 *** | 国省代码: | 天津;12 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明实施例公开了一种基于紧致三元损失的行人再识别方法,该方法包括:将训练集行人图像输入预训练深度学习模型,得到第一行人图像特征;根据紧致三元损失函数计算第一行人图像特征的紧致三元损失;对第一行人图像特征进行归一化,得到第二行人图像特征;根据交叉熵损失函数计算第二行人图像特征的交叉熵损失;结合紧致三元损失和交叉熵损失,优化行人再识别网络框架;基于优化行人再识别网络框架进行行人识别。本发明充分利用紧致三元损失与交叉熵损失的优势,联合两种损失来执行多任务操作、学习行人特征,进一步提高了行人再识别的匹配正确率。 | ||
搜索关键词: | 一种 基于 三元 损失 行人 识别 方法 | ||
【主权项】:
1.一种基于紧致三元损失的行人再识别方法,其特征在于,所述方法包括以下步骤:步骤S1,获取预训练深度学习模型,并对其进行参数初始化;步骤S2,将训练集的行人图像输入所述预训练深度学习模型,得到与所述训练集行人图像对应的第一行人图像特征ft;步骤S3,设置紧致三元损失函数,并根据所述紧致三元损失函数计算所述第一行人图像特征ft的紧致三元损失;步骤S4,在所述预训练深度学习模型后增加批归一化层对所述第一行人图像特征ft进行归一化操作,得到第二行人图像特征fv;步骤S5,在所述批归一化层后增加全连接层作为分类器对所述第二行人图像特征fv进行分类,设置交叉熵损失函数,并根据分类结果和所述交叉熵损失函数计算所述第二行人图像特征fv的交叉熵损失;步骤S6,结合所述紧致三元损失和交叉熵损失,对于由所述预训练深度学习模型、批归一化层以及全连接层组成的行人再识别网络框架进行优化,得到最优行人再识别网络框架;步骤S7,将测试行人图像输入所述最优行人再识别网络框架中,得到行人识别特征,并基于所述行人识别特征对于所述测试行人图像进行识别,得到行人识别结果。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于天津师范大学,未经天津师范大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201910614505.X/,转载请声明来源钻瓜专利网。
- 上一篇:一种农作物种植结构月尺度动态提取方法
- 下一篇:年龄识别方法及装置、存储介质