[发明专利]一种自动标记软件错误报告并进行严重性识别的方法有效
| 申请号: | 201910595620.7 | 申请日: | 2019-07-03 |
| 公开(公告)号: | CN110287124B | 公开(公告)日: | 2023-04-25 |
| 发明(设计)人: | 李辉;杨溪;张天伦;李阳;李博;陈荣;葛新 | 申请(专利权)人: | 大连海事大学 |
| 主分类号: | G06F11/36 | 分类号: | G06F11/36;G06F11/07 |
| 代理公司: | 大连东方专利代理有限责任公司 21212 | 代理人: | 姜玉蓉;李洪福 |
| 地址: | 116026 辽*** | 国省代码: | 辽宁;21 |
| 权利要求书: | 查看更多 | 说明书: | 查看更多 |
| 摘要: | 本发明公开了一种自动标记软件错误报告并进行严重性识别的方法,包括以下步骤:S1:对软件错误报告进行编码并将错误报告标记为严重或不严重;S2:采用严重报告和不严重报告训练分类器,获得每个输入报告的后验概率,其中后验概率为输入报告分类的概率分布;S3:采用完成训练的分类器对无标记报告的数据集进行分类,并获得该数据集中每个样例的后验概率;S4:根据S3中求得的后验概率求解每个无标记报告的模糊度;S5:将无标记报告按照模糊度的升序排列,选取前k个无标记报告填充到原数据集中扩充数据集,对扩充后的数据集重新训练分类器。 | ||
| 搜索关键词: | 一种 自动 标记 软件 错误报告 进行 严重性 识别 方法 | ||
【主权项】:
1.一种自动标记软件错误报告并进行严重性识别的方法,其特征在于包括:以下步骤:S1:对软件错误报告进行编码并将错误报告标记为严重或不严重;S2:采用严重报告和不严重报告训练分类器,获得每个输入报告的后验概率,其中后验概率为输入报告分类的概率分布;S3:采用完成训练的分类器对无标记报告的数据集进行分类,并获得该数据集中每个样例的后验概率;S4:根据S3中求得的后验概率求解每个无标记报告的模糊度;S5:将无标记报告按照模糊度的升序排列,选取前k个无标记报告填充到原数据集中扩充数据集,对扩充后的数据集重新训练分类器。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于大连海事大学,未经大连海事大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201910595620.7/,转载请声明来源钻瓜专利网。





