[发明专利]基于因子图模型的移动用户位置预测方法在审
申请号: | 201910592799.0 | 申请日: | 2019-07-03 |
公开(公告)号: | CN110322067A | 公开(公告)日: | 2019-10-11 |
发明(设计)人: | 陈旭;周知;武琼 | 申请(专利权)人: | 中山大学 |
主分类号: | G06Q10/04 | 分类号: | G06Q10/04;G06K9/62;H04W4/02;H04W4/029 |
代理公司: | 广州市华学知识产权代理有限公司 44245 | 代理人: | 李盛洪 |
地址: | 510275 广东*** | 国省代码: | 广东;44 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种基于因子图模型的移动用户位置预测方法,步骤如下:对用户的移动轨迹数据进行聚类,并剔除一些少见的位置点,得到用户的候选位置集合;从用户的历史记录日志中提取用户的时间特征,位置特征,网络状态特征和社交特征;对用户不同类型特征之间的关联情况用因子进行定义和表示,并构建因子图模型;训练该模型,并对用户下一时刻的位置进行预测。该发明综合考虑用户相邻时刻位置之间的时空关联性,以及用户的网络状态、社交行为对位置的影响,并用不同类型的因子来刻画不同类型特征对位置的影响,利用因子图模型将不同类型特征之间的关联进行有效地融合,该方法能显著提高移动用户位置预测的准确率。 | ||
搜索关键词: | 因子图 移动用户位置 预测 网络状态 移动轨迹数据 关联 候选位置 历史记录 社交行为 时间特征 位置特征 相邻时刻 综合考虑 关联性 位置点 有效地 准确率 日志 构建 聚类 剔除 集合 并用 刻画 时空 融合 | ||
【主权项】:
1.一种基于因子图模型的移动用户位置预测方法,其特征在于,所述的移动用户位置预测方法包括下列步骤:S1、提取用户候选位置集合,即对用户的移动轨迹数据进行聚类,剔除用户不常去的位置点,从而产生该用户的候选位置点,组成候选位置集合;S2、提取用户在不同时刻下的网络状态,不同社交行为类型的频率以及位置点,得到用户的时间特征、网络状态特征、社交特征以及位置特征;S3、建立移动用户行为序列,即将提取到的用户特征按照时间顺序转化为序列,序列中每个元组的格式为[时间特征,位置特征,网络状态特征,社交特征];S4、对不同类型特征之间的关联情况进行定义,并利用因子图模型将所有特征有效地融合到一个统一的框架中;S5、对构建的因子图模型进行训练,并预测用户下一时刻的位置点。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中山大学,未经中山大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201910592799.0/,转载请声明来源钻瓜专利网。
- 同类专利
- 专利分类
G06 计算;推算;计数
G06Q 专门适用于行政、商业、金融、管理、监督或预测目的的数据处理系统或方法;其他类目不包含的专门适用于行政、商业、金融、管理、监督或预测目的的处理系统或方法
G06Q10-00 行政;管理
G06Q10-02 .预定,例如用于门票、服务或事件的
G06Q10-04 .预测或优化,例如线性规划、“旅行商问题”或“下料问题”
G06Q10-06 .资源、工作流、人员或项目管理,例如组织、规划、调度或分配时间、人员或机器资源;企业规划;组织模型
G06Q10-08 .物流,例如仓储、装货、配送或运输;存货或库存管理,例如订货、采购或平衡订单
G06Q10-10 .办公自动化,例如电子邮件或群件的计算机辅助管理
G06Q 专门适用于行政、商业、金融、管理、监督或预测目的的数据处理系统或方法;其他类目不包含的专门适用于行政、商业、金融、管理、监督或预测目的的处理系统或方法
G06Q10-00 行政;管理
G06Q10-02 .预定,例如用于门票、服务或事件的
G06Q10-04 .预测或优化,例如线性规划、“旅行商问题”或“下料问题”
G06Q10-06 .资源、工作流、人员或项目管理,例如组织、规划、调度或分配时间、人员或机器资源;企业规划;组织模型
G06Q10-08 .物流,例如仓储、装货、配送或运输;存货或库存管理,例如订货、采购或平衡订单
G06Q10-10 .办公自动化,例如电子邮件或群件的计算机辅助管理