[发明专利]一种基于深度相关性特征学习的指静脉识别方法及装置有效
申请号: | 201910546950.7 | 申请日: | 2019-06-24 |
公开(公告)号: | CN110263726B | 公开(公告)日: | 2021-02-02 |
发明(设计)人: | 于治楼;计晓贇;袭肖明 | 申请(专利权)人: | 浪潮集团有限公司 |
主分类号: | G06K9/00 | 分类号: | G06K9/00;G06K9/62;G06N3/04 |
代理公司: | 济南信达专利事务所有限公司 37100 | 代理人: | 孙园园 |
地址: | 250100 山东*** | 国省代码: | 山东;37 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种基于深度相关性特征学习的指静脉识别方法及装置,属于生物识别领域,本发明要解决的技术问题为如何有效的对较细静脉的进行精确识别,建立细节点之间的关联性信息,确保具有较强的识别性能,采用的技术方案为:①该方法步骤如下:S1、提取细节点;S2、构建图节点;S3、学习相关性映射图:基于RankSVM的相关性图映射学习方法,获取相关性图的邻接矩阵,反映图节点之间的相关性信息;S4、深度相关性特征学习;S5、匹配:将得到的有效的深度相关性特征与数据库中存储的模板进行相似度比较,从而完成匹配任务。②该装置包括细节点提取模块、图节点构建模块、相关性映射图学习模块、深度相关性特征学习模块以及匹配模块。 | ||
搜索关键词: | 一种 基于 深度 相关性 特征 学习 静脉 识别 方法 装置 | ||
【主权项】:
1.一种基于深度相关性特征学习的指静脉识别方法,其特征在于,具体步骤如下:S1、提取细节点:提取手指静脉的细节点;S2、构建图节点:根据细节点构建手指静脉的图结构;S3、学习相关性映射图:基于RankSVM的相关性图映射学习方法,获取相关性图的邻接矩阵,反映图节点之间的相关性信息;S4、深度相关性特征学习:使用卷积神经网络对相关性映射图的有效信息进行深度学习,得到有效的深度相关性特征;S5、匹配:将得到的有效的深度相关性特征与数据库中存储的模板进行相似度比较,从而完成匹配任务。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于浪潮集团有限公司,未经浪潮集团有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201910546950.7/,转载请声明来源钻瓜专利网。