[发明专利]一种融合深度学习模型的WiFi身份识别方法有效
申请号: | 201910546173.6 | 申请日: | 2019-06-24 |
公开(公告)号: | CN110288018B | 公开(公告)日: | 2022-08-12 |
发明(设计)人: | 唐智灵;杨爱文;刘纤纤 | 申请(专利权)人: | 桂林电子科技大学 |
主分类号: | G06K9/62 | 分类号: | G06K9/62;G06V10/764;G06V10/771;G06V10/82;G06N3/04;G06N3/08 |
代理公司: | 桂林市华杰专利商标事务所有限责任公司 45112 | 代理人: | 杨雪梅 |
地址: | 541004 广*** | 国省代码: | 广西;45 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种基于融合深度学习模型的WiFi身份识别方法,包括为:S1、收集30个人员的WiFi信道数据;S2、从WiFi信道数据中提取Ntx*Nrx*30的3维CSI矩阵;S3、对提取出来的CSI矩阵数据进行数据预处理;S4、搭建融合深度学习模型,对S3中预处理后的CSI矩阵数据进行分类训练,实现人员身份识别。该方法用户不需要穿戴或依赖任何传感器,只需要利用无处不在的WiFi,通过处理WiFi中的信道状态信息,然后利用像素转置卷积网络和融合深度学习模型对其进行生物特征提取并实现多用户的身份识别。 | ||
搜索关键词: | 一种 融合 深度 学习 模型 wifi 身份 识别 方法 | ||
【主权项】:
1.一种基于融合深度学习模型的WiFi身份识别方法,其特征在于,包括如下步骤:S1、收集30个人员的WiFi信道数据;S2、从WiFi信道数据中提取Ntx*Nrx*30的3维CSI矩阵;S3、对提取出来的CSI矩阵数据进行数据预处理;S4、搭建融合深度学习模型,对S3中预处理后的CSI矩阵数据进行分类训练,实现人员身份识别。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于桂林电子科技大学,未经桂林电子科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201910546173.6/,转载请声明来源钻瓜专利网。